Indic Studies Foundation

(a California non-Profit Organization)www.indicethos.org www.indicstudies.us

www.vepa.us  kaushal's blog

index  Disclaimer

 

 

 

 

 

Home about us The Story of the Calendar AIT The Andhra  Satavahana Kingdoms Arrians Hiistory of Alexander Henry Rooke Aryabhata I Archaeology Aryan Migration Theories Astronomy Baudhika Dharma Bhartrihari Biographies  (mathematical sciences) Bhagavad Gita Bibliography California Text Book Travesty Caste Contact Core Values The Dhaarmic traditions Dholavira Digital Library of Indian History Books Distortions in Indian History Economics Editorial Archives Eminent Scientists Famine in British Colonial  India The ethics of the Hindu Glossary The Great Bharata war HEC2007 Hinduism/faqdharma.html HinduWeddings History The Indic Mathematical Tradition Indic Philosophy & Darshanas Indcstrat Kalidasa Katyayana Mathematics News and Current Events Panini References on India (library of Congress) References on Indic History References on Philosophy References for Place value systems References on Vedic Mathematical Sciences Sanskrit The Sanatana Dharna Secularism and the Hindu The South Asia File Srinivasa Ramanujan Vedic Mathematicians I Vedic Mathematicians II Vedic Mathematicians III What's in a name VP Sarathi Ancient Indian Astronomy
 

 

 

 

 

 

Who are We?

What do we do?

Latest News

Free Resources

Links

 

 

 



 

Foundations of Eurocentrism in Mathematics

Joseph, George Ghevarughese, "Foundations of Eurocentrism in Mathematics," Race and Class, XXVII, 3(1987), p.13-28.
Joseph suggests that "there exists a widespread Eurocentric bias in the production, dissemination and evaluation of scientific knowledge." He diagrams the "classical" Eurocentric approach as follows:

Joseph claims that this Eurocentric approach served as a "comforting rationale for an imperialist/racist ideology of dominance" and has remained strong despite evidence that there was significant mathematical development in Mesopotamia, Egypt, China, pre-Columbian America, India and Arabia, and that Greek mathematics owed a significant debt to the mathematics of most of those cultures.
A somewhat grudging acceptance of the debts owed to Greek mathematics and to Arabic contributions led some mathematical historians to accept "the 'modified' Eurocentric trajectory":



 

The modified trajectory still does not take into account the contributions of India and China, nor does it indicate the route through which Hellenistic, Chinese, Indian and Arabic mathematical translations, refinements, syntheses and augmentations arrived in Western Europe. Joseph therefore suggests the following "alternative trajectory" (from 8th to 15th century):



 

Among the interesting history presented by Joseph is that the earliest known general proof of the Theorem of Pythagorus is contained the Sulbasutras (circa 600-800 B.C.) from India, that "there is no evidence that Pythagorus had either stated or proved the theorem," that Arabic geometers laid the foundations for Saccheri's work in non-Euclidean geometry, that Spain and Sicily were the main points of contact for dissemination of mathematical knowledge to Western Europe, and that "practically all topics taught in school mathematics today are directly derived from the work of mathematicians originating outside Western Europe before the twelfth century A.D."

Joseph refutes the suggestion that pre-Greek mathematics lacked the concept of proof and insists that criticism of Egyptian and Babylonian mathematics as "more a practical tool than an intellectual pursuit" is symptomatic of Western intellectual elitism and racism. Joseph urges the "countering of Eurocentrism in the classroom." His concluding paragraph appears to be a strong statement of support for Ethnomathematics in the classroom and is reproduced below in its entirety:

"Finally, if we accept the principle that teaching should be tailored to children's experience of the social and physical environment in which they live, mathematics should also draw on these experiences, which would include in contemporary Britain the presence of different ethnic minorities with their own mathematical heritage. Drawing on the mathematical traditions of these groups, indicating that these cultures are recognized and valued, would also help to counter the entrenched historical devaluation of them. Again, by promoting such an approach, mathematics is brought into contact with a wide range of disciplines,including art and design, history and social studies, which it conventionally ignores. Such a holistic approach would serve to augment, rather than fragment, a child's understanding and imagination

.GeorgeJoseph Gheverghese c.v


 
 

Contact UsAbout UsCore ValuesCurrent EventsEconomicsHome

Copyright ŠKosla Vepa


View My Stats

Google


WWW indicethos.org